
A Software-Based Root-of-Trust Primitive
on Multicore Platforms

Qiang Yan†, Jin Han†, Yingjiu Li†, Robert H. Deng†, Tieyan Li‡
†School of Information Systems, Singapore Management University

‡Institute for Infocomm Research, A*STAR, Singapore
{qiang.yan.2008, jin.han.2007, yjli, robertdeng}@smu.edu.sg,

litieyan@i2r.a-star.edu.sg

ABSTRACT
Software-based root-of-trust has been proposed to overcome the
disadvantage of hardware-based root-of-trust, which is the high
cost in deployment and upgrade (when vulnerabilities are discov-
ered). However, prior research on software-based root-of-trust only
focuses on uniprocessor platforms. The essential security proper-
ties of such software-based root-of-trust, as analyzed and demon-
strated in our paper, can be violated on multicore platforms. Since
multicore processors are becoming increasingly popular, it is im-
perative to explore the feasibility of software-based root-of-trust
on them.

In this paper, we analyze the challenges of designing software-
based root-of-trust on multicore platforms and present two practi-
cal attacks that utilize the parallel computing capability to break
the existing schemes. We then propose a timing-based primitive,
called MT-SRoT, as the first step towards software-based root-of-
trust on multicore platforms. MT-SRoT is able to ensure untam-
pered execution of a critical security task, such as remote software
attestation, on homogeneous shared-memory multicore platforms
without the support of tamper-resistant hardware. We implement
MT-SRoT and show its effectiveness on both Intel dual-core and
quad-core processors.

Categories and Subject Descriptors
K.6.5 [Operating Systems]: Security and Protection

General Terms
Experimentation, Security

Keywords
Multicore, Software-based Root-of-trust, Trusted Computing

1. INTRODUCTION
As one of the core concepts of trusted computing, root-of-trust is

a set of unconditional trusted functions which are essential to per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

form tamper-resistant actions. Conceptually, root-of-trust is able to
verify the integrity of an application so as to detect whether it is
tampered. If untampered, this application can then be used to per-
form integrity verification for another application. Following this
mechanism, a chain of trust can be established so that any tam-
pered application in this trusted chain will be detected. In trusted
computing, root-of-trust acts as a local trusted party on a remote
untrusted system, which dramatically simplifies the security prob-
lems involving remote software attestation [18].

Currently, the most practical way to ensure root-of-trust is to use
tamper-resistant hardware, like hardware Trusted Platform Mod-
ule (TPM) [1]. The major advantage of hardware-based root-of-
trust is that it is physically secure. An adversary cannot forge fake
root-of-trust without using sophisticated hardware techniques [1],
if no design or implementation flaws exist. The major disadvan-
tage of hardware-based root-of-trust lies in the hardness of replac-
ing the vulnerable components or upgrading the outdated ones. The
effort on fixing vulnerable hardware-based root-of-trust would be
much more than that on fixing the Millennium Bug [2], as replac-
ing hardware is more expensive and time-consuming than replac-
ing software. Such design and implementation defects have indeed
been observed on hardware-based security products, such as Mi-
Fare Classic RFID smartcard [8] and Intel Trusted Execution Tech-
nology [19].

To avoid the disadvantage of hardware-based root-of-trust, re-
searchers attempt to build software-based root-of-trust without re-
lying on tamper-resistant hardware. Unlike the former, the latter is
easy to patch when vulnerabilities are discovered. Prior research
on software-based root-of-trust [10, 16, 15, 17, 14, 21, 13] only fo-
cuses on uniprocessor platforms (more precisely, for devices which
have a single processor without multicore and simultaneous mul-
tithreading features). Since multicore processors are becoming in-
creasingly popular even for embedded devices (ARM Ltd. has just
unveiled its multicore processor design for mobile phones [3]), it is
imperative to explore the feasibility of software-based root-of-trust
on multicore platforms.

In this paper, we analyze the challenges of building software-
based root-of-trust on multicore platforms, and propose MT-SRoT,
a timing-based primitive to overcome these challenges. The contri-
butions of this paper are summarized as follows:

• We give a systematic analysis on the existing software-based
root-of-trust schemes [10, 16, 15, 17, 14, 21, 13]. We show
that their essential security properties can be violated on mul-
ticore platforms even after fixing them against the existing
attacks [18, 20, 7]. Such vulnerability stems from the inher-
ent availability of parallel computing capability on multicore
platforms.

• We present two practical attacks against software-based root-

of-trust on multicore platforms. The first attack, which we
call pipeline parallelism attack, parallelizes the existing schemes
to break their timing property achieved only on uniprocessor
platforms. The second attack, which we call parallel inter-
ception attack, exploits the parallel computing capability to
nullify the effect of iterative checksum functions used in the
existing schemes. Both of the attacks are able to eliminate
the observable timing difference between running legitimate
code and running tampered code.

• We propose a timing-based primitive, MT-SRoT, to construct
software-based root-of-trust on multicore platforms. MT-
SRoT is able to prove its own integrity to a remote verifier
without the presence of tamper-resistant hardware. Based on
that, it is able to ensure untampered execution of a critical se-
curity task on homogeneous shared-memory multicore plat-
forms. We implement MT-SRoT and show its effectiveness
on both Intel dual-core and quad-core processors.

Our work shows the feasibility of building software-based root-
of-trust on multicore platforms and provides a primitive, MT-SRoT,
as the first step towards establishing a tamper-resistant execution
environment on multicore platforms, without the presence of tamper-
resistant hardware.

2. SOFTWARE-BASED ROOT-OF-TRUST ON
UNIPROCESSOR PLATFORMS

In this section, we provide an overview for existing software-
based root-of-trust schemes on uniprocessor platforms, including
the related definitions, threat model, assumptions, and desired prop-
erties. We further analyze the existing techniques for both con-
structing and attacking software-based root-of-trust. Based on this
analysis, we revise the existing timing-based schemes to be resilient
against all existing attacks on uniprocessor platforms under given
assumptions. This preliminary preparation is necessary and impor-
tant since the fixed scheme will be used as a building block for our
software-based root-of-trust scheme on multicore platforms.

2.1 Definitions
Root-of-trust can be practically defined as a set of trusted func-

tions, whose integrity can be remotely verified. For software-based
root-of-trust, this condition is ensured by some challenge-response
protocols [10, 16, 15, 17, 14, 21, 13] based on certain computation-
ally hard problems. These problems guarantee that it is computa-
tionally difficult for the adversary to calculate the correct response
with a tampered implementation of the protocol. The costs of solv-
ing the underlying computationally hard problems are significant
enough to violate certain constraints, which exposes the adversary
to the verifier.

Definition 1: A software-based root-of-trust scheme is a tuple of
algorithms and constraints (H, INT, EVC), where H is an imple-
mentation of a chosen set of computationally hard problems, INT
is a sub-algorithm of extracting integrity information, and EVC is
a set of constraints for external verifiable measurements that do not
rely on the existence of tamper-resistant hardware.

Software-based root-of-trust can be set up via a challenge-response
protocol. In this protocol, a trusted verifier who knows the expected
states of a legitimate device intends to ensure untampered execu-
tion of a critical security task S on an untrusted device as shown in
Figure 1.

In this paradigm, the implementation H (referred to as verifi-
cation code H) of the chosen computationally hard problems and
the critical security task S can be sent along with challenge c or

The verifier The untrusted device

Challenge c
1.

Response r
2. Compute r = H(c, INT<H, S>)

3. The verifier trusts the device only if r is correct and no EVC is violated.

Figure 1: The challenge-response paradigm used in the software-
based root-of-trust schemes

sent beforehand. INT〈H, S〉 is the integrity information (usually a
checksum) derived from the verification code H and the critical se-
curity task S. After H is executed, an execution commitment is es-
tablished so that the untampered execution of H will guarantee the
untampered execution of S. The verification code H is currently
implemented in the form of an iterative checksum function, where
a verification loop is used to iteratively calculate the checksum val-
ues from the memory data picked from pseudorandom positions.
If the adversary is forced to involve a constant overhead per itera-
tion, this design is able to amplify the overhead of the adversary to
the extent violating certain EVC. Until now, only the elapsed time
t between sending a challenge and receiving its response has been
used as EVC [10, 16, 15, 17, 14, 21, 13], where t should be within
a certain threshold T . The correctness of root-of-trust setup is en-
sured by the chosen computationally hard problems. The verifier
will trust the untrusted device only if the correct response r is cal-
culated within the thresholds as specified by EVC. The execution
commitment further ensures untampered execution of S.

2.2 Threat Model
In the threat models of existing software-based root-of-trust schemes

[10, 16, 15, 17, 14, 21, 13], the capabilities of an adversary are re-
stricted to full control of the software systems on the untrusted de-
vice. The adversary cannot modify the hardware specifications or
other external configurations which may affect the measurement of
external verifiable constraints. The goal of the adversary is to tam-
per with the execution of a critical security task after the “success-
ful" setup of root-of-trust. In this way, a remote verifier is cheated
by the adversary who claims that the critical security task is un-
tamperedly executed but it is actually not. We will use this threat
model in our following discussion for both uniprocessor platforms
and multicore platforms.

2.3 Assumptions
A well-controlled measurement environment is essential for cur-

rent software-based root-of-trust schemes to limit the capabilities
of the adversary to full control of the software systems only. There-
fore, the following assumptions are used for software-based root-
of-trust schemes: a) An adversary cannot add, remove, or change
any hardware components of the untrusted device. b) The untrusted
device must be a uniprocessor device so that isolated execution
ensured by a non-preemptive execution environment with Direct
Memory Access (DMA) disabled is sufficient to guarantee the ex-
ecution commitment without relying on extra hardware support.
However, the verifier usually cannot ensure that DMAs from the pe-
ripherals are disabled. Thus, it is also assumed that no DMA-based
attacks are performed [15]. c) When elapsed time between sending
the challenge and receiving the result is used as an external verifi-
able constraint, communication latency between the remote verifier
and the untrusted device can be estimated as a constant value so
that the threshold for maximum allowed time can be determined.
When tight bounds of elapsed time are used as the constraints, it is

further assumed that the processor is not overclocked. d) The un-
trusted device is only able to communicate with the remote verifier
during the whole process of establishing the root-of-trust.

In real scenarios, these assumptions are practically true for unipro-
cessor embedded devices in a local network. In our following dis-
cussion, we will keep the above assumptions and relax the unipro-
cessor assumption by allowing multicore devices with the hardware
feature of isolated execution [4, 5]. Isolated execution is to en-
sure that the measured application is the actual application running
without tamper, after the software-based root-of-trust is set up on
multicore platforms.

2.4 Desired Properties
Since the above assumptions guarantee the availability of a well-

controlled measurement environment, the remaining design chal-
lenge for software-based root-of-trust is to design the algorithm for
INT, the computationally hard problems for H , and external ver-
ifiable measurements for EVC. INT can be implemented by well-
designed checksum functions [16, 15], while the key idea of de-
signing H and EVC is to force the adversary to incur significant
overhead in the execution of the tampered verification code. There-
fore, the essential security properties for a secure software-based
root-of-trust scheme can be summarized as follows:

• Asymmetric property: It is unavoidable for an adversary to
solve the chosen set of computationally hard problems used
in H so as to calculate the correct response with tampered
verification code; while the legitimate verification code does
not need to solve these hard problems.

• Observable property: The costs of solving the chosen set
of computationally hard problems used in H should be sig-
nificant enough to violate the constraints EVC for the exter-
nal verifiable measurements. And the process of calculating
these constraints should be deterministic.

2.5 Review of Existing Schemes
The choice of the computationally hard problems is critical in

the design of software-based root-of-trust schemes. Several com-
putationally hard problems have been proposed in the existing con-
structions, which are based on a) slow simulation of side effects
of hardware architecture [10], b) difficulty of recovering the seed
from pseudorandom sequences [21], c) difficulty of static analysis
of self-modifying code [17], and d) difficulty of keeping the execu-
tion speed when extra operations are involved [16, 15, 14, 13], re-
spectively. Unfortunately, it was later found [18, 7] that all of them
do not satisfy the asymmetric property, except the last one. That is,
the adversary is able to calculate the correct response without solv-
ing the first three hard problems, while hiding the malicious data.
Hence, we focus on the schemes based on the last computationally
hard problem in the following discussion. This class of schemes,
which is referred to as timing-based schemes, can be described as
follows:

• Instances: SWATT [16], Pioneer [15], and Indisputable Code
Execution (ICE) [14, 13]

• Hard Problem: It is hard to run the tampered verification
code as fast as the time-optimal implementation of the legit-
imate code when the tampered code involves extra actions to
hide malicious data.

• EVC: Tight bounds for elapsed time between sending a chal-
lenge and receiving its response.

The computationally hard problem used in timing-based schemes
inherently achieves the asymmetric property if the following two

conditions are satisfied: 1) Time-optimal condition: The time-
optimal implementation is available for the legitimate verification
code. 2) Full-occupation condition: No computation resources
are left idle during the execution of the time-optimal verification
code. When these two conditions are met, it is logically impossi-
ble for an adversary to hide the time cost introduced by the extra
actions of obscuring the malicious data.

The extra time cost of the tampered code depends on the specific
actions introduced by an adversary. Since this construction tech-
nique does not produce a significant time gap between measuring
tampered code and legitimate code, tight timing bounds are used
based on prudent analysis [16, 15]. Although the tight bounds may
narrow the application area of this method, and it is challenging to
determine the proper timing bounds as required by the observable
property, it is the only existing technique that satisfies all essential
security properties on uniprocessor platforms.

Several attacks [18, 20, 7] have been proposed against the imple-
mentations of the timing-based schemes for software-based root-
of-trust. These attacks include: a) most significant bit (MSB) can-
cellation attack [16] that exploits the cancellation property of the
checksum function, b) hardware-based memory mapping attack [20]
that exploits the virtual memory mapping of modern processors,
c) return-oriented programming based attack [7], and d) threshold
overestimation attack [7]. The first two attacks redirect the mem-
ory mapping such that tampered code is able to efficiently calculate
the correct response by reading untampered data without significant
time overhead. These two attacks have been addressed and solved
in the latest implementation [15] of timing-based schemes. The last
two attacks are recently discovered [7]. The third attack crafts a
return stack that gains the control of code execution from return in-
structions, which defeats the schemes designed solely against code
injection. The remedy for this attack is to simply avoid any indirect
jump instructions with unverified jump targets; that is, the verifica-
tion process should call the function implementing the critical secu-
rity task before it is returned. The last attack shows the possibility
of overestimating the detection thresholds by designing a stronger
adversary than that given in the original paper [16]. However, it
can be easily solved as new thresholds can be updated accordingly
after new attacks are found. It will be more and more difficult for
the adversary to develop a stronger new attack. Therefore, the tim-
ing threshold will converge to its theoretically best value after the
timing-based schemes are deployed for a period of time.

To summarize, the timing-based schemes are robust against all
existing attacks on uniprocessor platforms under given assumptions
as justified in their original papers [16, 15]. We refer to these timing
based schemes as instances of T-SRoT, which is defined as an ab-
stract Timing-based scheme for Software-based Root-of-Trust on
uniprocessor platforms. We will use it as a building block in our
design of software-based root-of-trust for multicore platforms in
Section 4.

3. CHALLENGES FROM MULTICORE
PLATFORMS

The most significant difference between uniprocessor platforms
and multicore platforms is that parallel computing units are natu-
rally available for an adversary on multicore platforms. The us-
age status (e.g. disabled or active) of these computing units can-
not be remotely verified without tamper-resistant hardware [4, 5].
Thus, the adversary could use unoccupied computing units to break
timing-based schemes for software-based root-of-trust. We present
two types of attacks to T-SRoT when implemented on multicore
platforms, depending on whether the parallel computing units work

cooperatively or alone. In analysis, we assume that T-SRoT is used
as the target software-based root-of-trust scheme deployed on one
computing unit, while the remaining computing units are left idle
for the use by the adversary.

For ease of reference, Table 1 lists the terminologies and exper-
imental settings used in this paper. Note that in our analysis and
experiments, we always use multicore desktop PCs, even for test-
ing the schemes that are mainly designed for embedded devices.
The major reason is that multicore embedded devices are currently
not publicly available in the market. However, using desktop PCs
does not affect the effectiveness of any conclusion drawn from our
experiments. All involved schemes are implemented in C and in-
line assembly codes, which are tuned to approximate the optimal
implementation as required in the original papers [16, 15].

Table 1: Terminologies and Experimental Settings

Multicore
platform

A multicore platform uses current homogeneous shared-memory
multicore architecture, where each core on the platform has the
same capabilities and can access to the memory used by another
core. We only consider the homogeneous shared-memory multi-
core platforms in the construction of MT-SRoT, and leave the other
multicore platforms for our future work.

Computing
unit

A physical computing unit is able to perform computation task
simultaneously with the other physical computing units. Each
computing unit has the same capabilities on homogeneous shared-
memory multicore platforms. For example, one core of multicore
processor without simultaneous multithreading feature is a comput-
ing unit.

Dual-core
machine
settings

Intel Core 2 Duo 2.53GHz CPU E7200, 4GB DDR2 Memory,
Ubuntu Server 9.10 (64-bit).

Quad-core
machine
settings

Intel I7 2.8GHz CPU 860 with Turbo Boost and simultaneous mul-
tithreading disabled to avoid the variation of CPU frequency, 4GB
DDR3 Memory, Ubuntu Server 9.10 (64-bit).

3.1 Pipeline Parallelism Attack
Figure 2(a) illustrates our first attack, which we call pipeline par-

allelism attack. This attack exploits a vulnerability in all existing
software-based root-of-trust schemes [10, 16, 15, 17, 14, 21, 13],
in which pipeline parallelism is not considered in formulating the
non-parallelism property. The basic idea of pipeline parallelism at-
tack is to partition the verification loop into several stages and ex-
ecute each stage in parallel on different computing unit. Provided
that the data dependency between stages can be decoupled, each
stage can execute the next iteration without waiting for the output
from its next stage. This attack is practical on multicore platforms
due to the low latency in communications among the computing
units. Pipeline parallelism attack can be used to violate the time-
optimal condition of timing-based scheme because the pipelined
implementation on multiple computing units may execute faster
than the time-optimal implementation on one computing unit.

The effect of pipeline parallelism attack depends on the partition
of stages and the inter-stage communication cost. If the execution
time of implementing T-SRoT on one computing unit is T , the ex-
ecution time for its pipelined implementation is Ti + Ci, where
Ti and Ci are the execution time and communication time of the
longest stage i, respectively. As Ti is less than T , the pipelined im-
plementation will run faster than the original implementation when
the communication cost satisfies Ci < T − Ti.

To illustrate the process of pipeline parallelism attack, we use
SWATT [16] as an example for T-SRoT. The original SWATT code
can be partitioned into two pipeline stages that run on two comput-
ing units, as shown in Figure 2(b). These two stages are referred to
as stage A and stage B, respectively. In SWATT, there is a natural

partition point since the execution of RC4 pseudorandom number
generator is not relied on the output of checksum computation.

We test the effectiveness of pipeline parallelism attack on our
dual-core machine. To minimize the communication cost, we use
the latest cache-optimized lock-free message queue implementa-
tion [9]. This message queue is used to hand over the pseudoran-
dom numbers generated from the first stage to the second stage,
which calculates the checksum based on these pseudorandom num-
bers. Figure 3 gives the speedup ratio of pipelined SWATT code
compared to the original SWATT code. For 64KB target memory,
the pipelined code runs 1.8% faster than the original code after
2,500,000 iterations. This is a significant improvement since the
time-optimal Pioneer is only 1.3% faster than its theoretically best
adversary after the same number of iterations on modern x64 plat-
forms [15].

100000 1000000

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

S
p
e
e
d
u
p
 R

a
ti
o

Iteration Number

 8KB

 16KB

 32KB

 64KB

 128KB

 256KB

 512KB

32000 2500000

Figure 3: Speedup ratio of pipelined SWATT code compared to the
original SWATT code for different memory sizes on the dual-core ma-
chine. The original SWATT is reimplemented for x64 architecture.

Figure 3 also shows two interesting results of pipeline paral-
lelism attack: 1) The pipelined code does not run faster than the
original code until the number of iterations is large enough. This
slowdown is caused by the warmup procedure of the pipelined code
that fills the message queue. When the message queue is filled, each
stage can continue execution without waiting for the outputs from
the previous stage. 2) The speedup ratios are much lower than ex-
pected as only several percentage points are achieved by doubling
the number of computing units. This inefficiency is caused by rela-
tively high communication cost between two consecutive stages.

In our experiments, the average communication cost including
waiting time is 26 cycles per iteration for stage A and 9 cycles per
iteration for stage B, while the original code takes 37 cycles per iter-
ation. It shows that the communication cost is significant on current
multicore machines when the code size of the verification loop is
small. Nonetheless, 1.8% time advantage is significant enough to
show the potential of using multiple computing units to break the
time-optimal condition of T-SRoT on multicore platforms.

This vulnerability of SWATT [16] also exists in other software-
based root-of-trust schemes [10, 15, 17, 14, 21, 13]. In the verifi-
cation code of these schemes, the lightweight pseudorandom num-
ber generators also take no output from checksum computation. It
is thus feasible to parallelize the time-optimal implementations of
these schemes on multicore platforms.

Our remedy for this vulnerability is to introduce a backward data
dependency from the end of the verification loop to its beginning.
This can be implemented by using a parameterized pseudorandom
number generator that takes the current checksum value as its in-
put so that only one stage can execute at any time while the other

while(...){

R1 = Stage1();

R2 = Stage2(R1);

...

RN = StageN(RN-1);

}

while(...){

R1 = Stage1();

Enqueue(R1)

}

while(...){

R1 = Dequeue();

R2 = Stage2(R1);

Enqueue(R2);

}

while(...){

RN-1 = Dequeue();

RN = StageN(RN-1);

}

R1

RN-1

R2

Time-optimal code for the verification

loop on uniprocessor platforms:

Pipelined code for the verification loop

on multicore platforms:

R
u
n

 o
n

 C
o

r
e

 1
R

u
n

 o
n

 C
o

r
e

 2
R

u
n
 o

n
 C

o
r
e

 N

(a) Concept

Generate i-th member of random se-
quence using RC4 cycles

Cycles in
the Simula-
tion[16]

Stage A (13
cycles)

zh← 2 ldi r31, 0x02 1
r15← *(x++) ld r15, x+ 2
yl← yl + r15 add r28, r15 1

zl← *y ld r30, y 2
*y← r15 st y, r15 2

*x← zl st x, r30 2
zl← zl + r15 add r30, r15 1

zh← *z ld r31, z 2
Generate 16-bit memory address

Stage B (10
cycles)

zl← r6 mov r30, r6 1
Load byte from memory and compute
transformation

r0← *z lpm r0, z 3
r0← r0⊕ r13 xor r0, r13 1

r0← r0 + r4 add r0, r4 1
Incorporate output of transformation
into checksum

r7← r7 + r0 add r7, r0 1
r7← r7¿ 1 lsl r7 1

r7← r7 + carry bit adc r7, r5 1
r4← zh mov r4, r31 1

(b) SWATT code and pipeline partitions

Figure 2: Pipeline Parallelism Attack

stage has to wait for its output. The parameterized pseudorandom
number generator can be implemented based on two lightweight
pseudorandom number generators. The current checksum value is
used as a dice to select one of the two generators to generate the
next pseudorandom number.

3.2 Parallel Interception Attack
Figure 4 illustrates our second attack, which we call parallel in-

terception attack. This attack can be launched by an idle comput-
ing unit alone. It exploits resource sharing of multicore platforms
to intercept the initialization process of the secure execution envi-
ronment which cannot be finished in one atomic operation on cur-
rent hardware implementations [4, 5]. For example, the senter
instruction of Intel Trusted Execution Technology can be success-
fully invoked only after an initialization process according to its
official developers’ manuals [4]. This process consists of at least
410 instructions estimated from the size of the last initialization
method txt_launch_environment in its official open source
implementation (Trusted Boot [6]). It is thus reasonable to estimate
that the time cost of the initialization process is at least 200 cycles.
We will use 200 cycles to represent the cost of the initialization of
the secure execution environment in our experiments.

Verification loop Send the result

Initialization of the

secure execution

environment

T
h
e
 u

n
tr

u
s
te

d

d
e

v
ic

e

The verifier the device afterward.

1. The result is correct and the

computation time is within the threshold.

2. The initialization process is so that

the secure execution environment will not be activated.

Another Idle

Computing Unit

Figure 4: The basic idea of parallel interception attack is to inter-
cept the initialization process of the secure execution environment after
the legitimate verification code sends the correct report to the verifier.
The verifier is cheated to believe the secure execution environment is
untamperedly launched while it is actually not.

Although this attack seems straightforward compared to pipeline

parallelism attack, it is more serious as it only requires the availabil-
ity of an idle computing unit for a short time period. This attack is
able to violate the asymmetric property required for software-based
root-of-trust. The adversary is now able to gain the control of the
execution after the legitimate code sends the correct report without
solving the underlying computationally hard problems. This attack
is also able to violate the observable property as it takes almost
zero cost to finish the interception operation and this cost cannot
be amplified by the iterative checksum design. Thus, it will be very
difficult to determine any significant thresholds for attack detection.

A simple technique to perform the interception attack is to change
the instruction memory. This technique will not fail as long as the
memory, which stores the last instruction of the initialization pro-
cess of the secure execution environment, can be changed at the
time between the end of report-sending instructions and the end of
the initialization process. To decide the time point when to perform
the interception operation, the adversary can estimate the execution
time between the start of verification code and the end of report-
sending instructions. And this execution time period is estimable
because the verifier also uses it to decide the timing thresholds.

-200 -150 -100 -50 0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 R

a
te

Offset [cycles]

 Success Rate

Figure 5: Success rate of one-off parallel interception attack

Figure 5 shows the success rate of one-off interception actions
in our experiments, where we use 200 cycles as the estimated time
cost for the initialization of the secure execution environment. In

our experiments, an adversary estimates the time point to perform
the interception operation from different offset, which is based on
the estimated cycles between the start of verification code and the
end of report-sending instructions. The adversary intends to re-
place the function pointer at the end of the initialization process
of the secure execution environment. It will succeed only when
the interception time point is within the 200-cycle gap between the
end of report-sending instructions and the end of the initialization
process. Each bar in the figure represents the success rate of 100
samples at certain offset. Zero offset represents the estimated time
point of the end of report-sending instructions.

The results in Figure 5 show that the adversary is able to achieve
over 80% success rate with only one trial to perform interception
action if the execution time of legitimate code can be reasonably
estimated. Our remedy for this attack is to use two-stage timing
report, where the computing units that do not perform the critical
security task will be assigned with heavy workloads so that they
cannot send any responses before the secure execution environment
has been initialized. This will guarantee the successful initializa-
tion of the secure execution environment when all the idle comput-
ing units are occupied for the computation of their responses. It
works because the adversary has to first finish the computation of
heavy workloads within the time constraint specified by the verifier.

4. DESIGN OF MT-SROT
MT-SRoT is a software-based root-of-trust scheme designed for

multicore platforms. It is a timing-based scheme, able to handle
the new challenges from the parallel computing units on multicore
platforms as identified in this paper. In the following, we detail the
design of MT-SRoT, and analyze why this scheme is able to achieve
the two essential security properties of software-based root-of-trust
on multicore platforms.

4.1 Conceptual Design
In the design of MT-SRoT, we use T-SRoT as a building block

and assume that it is able to resist all existing attacks on a sin-
gle computing unit, as it has been justified in prior work [16, 15].
Since only abstract operations of T-SRoT are used in MT-SRoT,
any T-SRoT instance such as Pioneer [16], SWATT [15], and other
existing schemes [14, 13] can be used in MT-SRoT. The appropri-
ate T-SRoT instance should be selected according to the hardware
architecture of the target platforms. Figure 6 shows the flow dia-
gram of MT-SRoT.

INIT
Main Computing

Unit 1
LOOP SEND INIT_SE EXEC_SE

INIT
Side Computing

Unit 2
LOOP SEND

INIT
Side Computing

Unit n
LOOP SEND

Short Timing Threshold

Long Timing Threshold
Timer Starts

Figure 6: Flow diagram of MT-SRoT

MT-SRoT assigns an instance of T-SRoT to each available com-
puting unit, where each instance contains three common abstract
operations: INIT for initialization, LOOP for verification loop, SEND
for checksum report sending. The computing units are divided into
two groups, side computing units that only perform the verification

task and main computing units that also perform the critical security
task. The main computing units have two extra abstract operations:
INIT_SE for the initialization of a secure execution environment,
and EXEC_SE for the execution of a critical security task under the
secure execution environment. Since we assume the availability of
isolated execution for the secure execution environment on multi-
core platforms, the execution of a critical security task EXEC_SE is
secure after successful invocation of INIT_SE. We further assume
that the activation of the secure execution environment on one com-
puting unit will not affect the activities on other computing units.
These features can be achieved using the improved hardware design
proposed in [11].

Given a verifier and an untrusted multicore computing device,
MT-SRoT works as follows:

1. The verifier sends the untrusted device a set of challenges
C = {c1, c2, . . . , cN} for each T-SRoT instance on a mul-
ticore platform with N computing units. The code of these
instances can be sent beforehand or together with the chal-
lenge. After that, the verifier starts timing for each challenge
ci.

2. After receiving the challenge C, the untrusted device deploys
an instance of T-SRoT for each available computing unit and
starts running them as early as possible. The instance of T-
SRoT on computing unit i uses ci as an parameter to perform
INIT operation, which includes setting seed for pseudoran-
dom number generator, and initializing control variables.

3. Each instance of T-SRoT performs LOOP operation to cal-
culate the checksum of a single memory partition which is
coded into the implementation of T-SRoT. The memory re-
gion consisting of all memory partitions should cover the en-
tire target memory region, including the verification code,
the critical security task, and other contents to be verified.

4. After a computing unit finishes its LOOP operation, it per-
forms SEND operation to send the response (ci, csumi) back
to the verifier, and continue to do INIT_SE and EXEC_SE
operations if it is a main computing unit.

5. After receiving the response (ci, csumi), the verifier stops
its timer for challenge ci and checks the correctness of check-
sum csumi. It also checks whether the elapsed time ti for ci

is within the timing threshold Ti. Different timing thresholds
are used for main computing units and side computing units.
This is because heavy workloads (e.g., by increasing the iter-
ation number of verification loop) are assigned to side com-
puting units so as to keep them busy before INIT_SE opera-
tions are finished by the main computing units. The verifier
will trust that the security task has already been launched un-
der a secure execution environment only if all the checksums
are correctly calculated within the respective timing thresh-
olds.

To minimize the interference among the computing units during
the verification process, each memory partition should be aligned
to the cache line boundaries and not be intersected with each other
so that coherence cache misses and other non-compulsory cache
misses will be minimized. Besides these restrictions, each memory
partition should be a continuous memory region; otherwise, the ex-
istence of discrete memory segments may degrade the efficiency of
cache system. An adversary may exploit this inefficiency to break
the time-optimal condition by rearranging the memory segments.
For modern processors with separated local cache for each com-
puting unit, the size of each memory partition should be smaller
than the size of the local cache such that no cache misses occur
after warmup. This is also required in certain instances [15] of

T-SRoT, which will minimize the impact of variance of memory
access latency.

The verification process of MT-SRoT is not exactly the same as
T-SRoT, since the target memory region is now divided into several
partitions and verified by multiple computing units in parallel. On
uniprocessor platforms, it is vulnerable to divide the target memory
region into partitions and verify them separately [21]. This is be-
cause an adversary may move the tampered data from one partition
that is currently being verified to another partition that is not being
verified. However, this attack does not work for MT-SRoT because
any tampered datum within the target memory region will be ver-
ified by one of the computing units at any time (unpredictable to
adversary) before the end of verification process. Therefore, MT-
SRoT provides the same integrity guarantee as provided by the in-
stances of T-SRoT in MT-SRoT.

Current design of MT-SRoT only considers the homogeneous
physical cores in the main CPU of the device. The other computing
units, such as GPU and disk controller, may exist on the same de-
vice. These computing units usually have different capabilities and
work as slaver processors that execute the commands from the main
CPU. It is possible for the adversary to schedule these computing
units to intercept the establishment of software-based root-of-trust
by DMA or similar mechanisms. This attack is difficult to handle,
and thus assumed not to happen in the all existing T-SRoT schemes
[15]. It may be feasible to solve this problem by crafting challenges
for these computing units. This extension requires considerable ef-
forts to handle such heterogeneous distributed-memory many-core
systems, which is left as our future work.

4.2 Asymmetric Property
Recall that a timing-based scheme satisfies the asymmetric prop-

erty if both time-optimal condition and full-occupation condition
are fulfilled. However, these conditions can be easily violated on
multicore platforms even for the schemes that are secure on unipro-
cessor platforms. To meet these conditions on multicore platform,
we introduce three new properties:

• Full-parallelism property: The verification code should be
fully parallelized on each computing unit. It can be achieved
by assigning each computing unit with an independent task
so that each task can be independently optimized without
considering the inter-core communication cost.

• Data-independent property: The data processed in inde-
pendent tasks of verification code should be independent so
that the adversary cannot use inter-core communication to
accelerate the computation (e.g., by reusing the common in-
termediate results of any two tasks).

• Full-coverage property: The execution time of the tasks as-
signed to the computing units that do not perform the critical
security task should be long enough to cover the initialization
process of the secure execution environment.

The first two properties are mainly designed to achieve the time-
optimal condition. It is well known that it is difficult to achieve
the time-optimal implementation for generic computation tasks on
multicore platforms. The reason is that the tradeoff between com-
putation and communication costs dramatically expands the search
space of possible implementations. Therefore, we introduce full-
parallelism property and data-independence property and use these
two properties to reduce the search space. We further introduce the
following conjecture for current multicore machines to solve the
time-optimal problem.

Cooperation Efficiency Conjecture: For any two computing units
with equal computational capability, the efficiency when they work

individually to solve two independent computationally intensive
non-parallelism tasks (each computing unit solves one task) will
not be lower than that when they work cooperatively (together the
two units solve two tasks), if the following three conditions are sat-
isfied: 1) they always use time-optimal implementations; 2) the lo-
cal cache of individual computing units is large enough to hold the
entire working set of the assigned task; 3) there are no common
sub-tasks in the chosen tasks.

This conjecture can be realized on current mainstream homoge-
neous multicore processors, like Intel Core processors. Due to the
page limit, we only give the basic idea for the proof of this conjec-
ture: The condition of no common sub-tasks implies that the coop-
eration strategy will only incur extra communication cost without
saving any computation cost. Our experiments of pipeline paral-
lelism attack further show that these communication costs are still
significant on current multicore platforms. The major challenge of
implementing this conjecture is to ensure the condition of no com-
mon sub-tasks. It is difficult to absolutely guarantee, but it can be
easily approximated by using different seeds for the same pseudo-
random number generator used in the verification code. The prob-
ability of the occurrence of a long common pseudorandom number
subsequence will be very low when using two different seeds for a
non-flawed pseudorandom number generator. Therefore, the prob-
ability of the occurrence of a reusable common sub-task, which re-
quires a long common pseudorandom number subsequence to off-
set the extra communication cost, is also very low.

Under the cooperation efficiency conjecture, the first two prop-
erties actually reduce the time-optimal problem on multicore plat-
forms to the time-optimal problem on each computing unit, which
is the same as the problem that has been solved in the timing-based
schemes for uniprocessor platforms [16, 15]. Figure 7 shows the
feasibility of achieving time-optimal condition on multicore plat-
forms. In the experiment of parallel checksum function, each avail-
able computing unit is required to simultaneously verify a non-
overlapped continuous memory region whose size is the same as
that of its counterpart executed on a single computing unit alone.
The longest finish time in these computing units is chosen as the
result. The total iteration number for each computing unit that ver-
ifies M -size memory is M ln(M) based on the coupon collection
problem used in the prior work [16, 15]. The theoretical best time
ratio of parallel checksum function is 1.0 when there is zero inter-
ference cost between these computing units. Figure 7 shows that
our implementation of parallel checksum function almost reaches
the theoretical best result. And the interference among multiple
computing units is insignificant even when the size of assigned
non-overlapped memory partitions is larger than the size of local
L1 data cache, 32KB.

Besides the above effects, these two properties also partially solve
the full-occupation problem as prior work [15] has shown that the
timing-based schemes can be tuned to occupy all the computation
resource on a single computing unit. Nonetheless, it is still possible
for an adversary to launch parallel interception attack if all of the
tasks assigned to a computing unit finish before the end of the ini-
tialization process of the secure execution environment. Therefore,
we need the last property, full coverage property, to achieve the
full-occupation condition by ensuring that all available computing
units finish their tasks after the initialization process of the secure
execution environment. These tasks are protected by the interrupt-
resistant mechanisms introduced in the instances of T-SRoT [15],
which guarantee that the current checksum value will be overwrit-
ten when an adversary attempts to reschedule any task (by an unex-
pected software or hardware interrupt). Hence, both time-optimal
and full-occupation conditions for our timing-based scheme are sat-

4KB 8KB 16KB 32KB 64KB 128KB

0.998

0.999

1.000

1.001

1.002

1.003

1.004

1.005

1.006
R

a
ti
o
 o

f
E

x
e
c
u
ti
o
n
 T

im
e

Memory Size

 Dual-core Machine

 Quad-core Machine

Figure 7: Time ratio between running time-optimal implementation
on a single computing unit and running parallel implementation of the
same checksum function on multiple computing units

isfied, which leads to the asymmetric property.

4.3 Observable Property
The observable property requires deciding a tight threshold to

distinguish between legitimate verification code and tampered ver-
ification code. This threshold decision problem on multicore plat-
forms can be reduced to the threshold decision problem on unipro-
cessor platforms under the cooperation efficiency conjecture. The
conjecture implies that cooperative attacks against our scheme by
multiple computing units are not as efficient as individual attacks
to each computing unit. It is because the communication among
multiple computing units does not accelerate the whole verifica-
tion process if there is no common intermediate result to share in
the verification process. So the best strategy for the adversary is to
tamper with verification code on the computing units that verify the
memory region containing the tampered data.

M
a
lic

io
u
s
 d

a
ta

 X

C
o
d
e
 A

C
o
d
e
 B

i j

Figure 8: Chain effect caused by taint propagation

To amplify the overhead of the adversary on homogeneous shared-
memory multicore platforms, a chain effect can be designed for
memory partition scheme so as to force the adversary to tamper
with all computing units, even when its purpose is only to tamper
with one byte within the target memory without being detected. As
illustrated in Figure 8, when the adversary tampers with one part
of the verification code, the taint propagation will in turn forces it
to tamper with other parts of the verification code. This effect can
be implemented by a check ring, where the memory partition that
contains the verification code for one computing unit is assigned to
its next computing unit (the first computing unit is assigned as the
next computing unit of the last computing unit). If the verification
code executed on one computing unit is tampered, the check ring
will force the adversary to tamper with all of the verification codes
for the remaining computing units.

For those computing units that execute tampered verification codes,
the minimum time for finishing their tasks alone can be estimated

in the same way as estimated on uniprocessor platforms [16, 15].
However, the estimated time cannot be used as the timing thresh-
olds if the adversary is able to accelerate the remaining computation
process by using the idle computing units that finish the execution
of the legitimate verification code. This unwanted situation is pre-
vented due to the non-parallelism property [15] of T-SRoT with
our fixings against pipeline parallelism attack. Therefore, we can
reuse the analysis results of the theoretical best adversary [16, 15]
to determine the timing thresholds in our scheme so as to satisfy
the observable property.

5. IMPLEMENTATION AND EVALUATION
We implement MT-SRoT on our multicore machines of x64 ar-

chitecture (referring to Table 1 for experimental settings). Pioneer
[15] is chosen as the instance of T-SRoT. According to the original
paper of Pioneer, the target memory region to be verified should
include the verification code and a critical security task. Our mem-
ory partition scheme evenly divides this memory region into N
continuous partitions for a machine with N computing units. To
determine the iteration number and timing threshold, the original
analysis requires estimating the time overhead and advantage of
theoretical best adversary including the time of extra computation,
network round trip (RTT) and cache warmup. In our experimental
settings, the untrusted devices are one dual-core machine and one
quad-core machine located at two different physical locations on
our LAN segment. For the dual-core machine, the time overhead o
is 1.71 cycles per iteration of the verification loop; the upper bound
of RTT time aRTT between the verifier and the untrusted device is
0.755ms; the cache warmup time acache is 0.00021ms. For the
quad-core machine, the time overhead o is 0.93 cycles per itera-
tion of the verification loop; the upper bound of RTT time aRTT

between the verifier and the untrusted device is 0.597ms; the cache
warmup time acache is 0.00011ms.

To keep side computing units busy before the end of the ini-
tialization of the secure execution environment, we also need to
estimate the extra workload assigned to side computing units from
the initialization cost aINIT_SE, which is 200 cycles estimated from
the latest official open source implementation of Intel Trusted Ex-
ecution Technology [6], and the upper bound of the execution time
variations of the main computing units aVAR_MAIN. The required
minimum iteration number is Itnmain = max((aRTT + acache) ∗
clockSpeed/o, M ln(M)) for main computing units and Itnside

= Itnmain + 2 ∗ max(aINIT_SE, aVAR_MAIN) for side comput-
ing units, where clockSpeed is the clock speed of each computing
unit, and max(aINIT_SE, aVAR_MAIN) is doubled to ensure that
side computing units cannot finish its workload before the end of
INIT_SE operation, and M is the size of the assigned memory par-
tition. To prevent any false positives due to RTT variations, we
double the minimum iteration number as the original Pioneer does.
For 16KB target memory region, the minimum iteration number is
2,400,000 for main computing units and 2,409,520 for side comput-
ing units on the dual-core machine, and 3,600,000 for main com-
puting units and 3,612,792 for side computing units on the quad-
core machine. The timing threshold for the verifier is set as the sum
of the computation time taken by the legitimate verification code
for the specified iteration number and the upper bound of RTT time.
The verifier considers the root-of-trust setup fails if a response from
any computing unit is received after its timing threshold.

We run our experiment for 2 hours and take a sample every two
minutes. For each sample, the verifier invokes two executions of
MT-SRoT on the untrusted device by using the legitimate verifica-
tion code and the tampered verification code of the theoretical best
adversary, respectively. Each execution of MT-SRoT includes the

0 20 40 60 80 100 120

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

82.0

E
x
e
c
u
ti
o
n
 T

im
e
 [

m
s
]

Time of Measurement [minutes]

 Expected Runtime and Network RTT (Detection Threshold)

 Legitimate Code's Runtime

 Theoretically Best Adversary's Runtime

 Legitimate Code's Runtime and Network RTT

 Adversary's Runtime and Network RTT

(a) Legitimate code vs. adversary code (dual-core)

0 20 40 60 80 100 120

77.4

77.5

77.6

77.7

77.8

77.9

78.0

E
x
e

c
u

ti
o

n
 T

im
e

 [
m

s
]

Time of Measurement [minutes]

 Main Computing Unit 1

 Side Computing Unit 2

 Main Computing Unit 1 + 200 cycles

(b) Main computing unit vs. side computing unit (dual-core)

0 20 40 60 80 100 120

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

E
x
e
c
u
ti
o
n
 T

im
e
 [

m
s
]

Time of Measurement [minutes]

 Expected Runtime and Network RTT (Detection Threshold)

 Legitimate Code's Runtime

 Theoretically Best Adversary's Runtime

 Legitimate Code's Runtime and Network RTT

 Adversary's Runtime and Network RTT

(c) Legitimate code vs. adversary code (quad-core)

0 10 20 30 40 50 60 70 80 90 100 110 120

83.6

83.8

84.0

84.2

84.4

84.6

84.8

85.0

E
x
e
c
u
ti
o
n
 T

im
e
 [

m
s
]

Time of Measurement [minutes]

 Main Computing Unit 1

 Side Computing Unit 2

 Side Computing Unit 3

 Side Computing Unit 4

 Main Computing Unit 1 + 200 cycles

(d) Main computing unit vs. side computing unit (quad-core)

Figure 9: Significant and stable timing differences exist between legitimate verification code and tampered verification code as in sub-figures (a)
and (c). Such significance and stability also exist in the timing differences between main computing unit and side computing units as in sub-figures
(b) and (d). Sub-figures (a) and (c) only show the results for the slowest side computing unit (representing the total execution time), as the results for
other individual computing units are very similar.

complete challenge-response protocols, where a 50ms spin-loop is
used as the symbolic critical security task for the main computing
unit. Both the verifier and the untrusted device measure the elapsed
time for obtaining the correct responses using the rdtsc instruc-
tion. The time measured on the untrusted device for the tampered
verification code is the checksum computation time of the theoret-
ical best adversary.

Figure 9 shows the results of our experiments, in which we inves-
tigate the timing differences between legitimate verification code
and tampered verification code, and between main computing unit
and side computing units. The experimental results lead to the
following conclusion: a) The theoretical best adversary consumes
significantly more time than the detection threshold, which yields
zero false negative. b) The variance of response computation time
is very low, which can be easily determined from a training pro-
cess. The impacts from inference among multiple computing units
and slight difference in clock rates of different computing units are
insignificant for our design. c) The variance of RTT time may
cause false positive, which can be avoided by the improved es-
timation method as suggested in [15]. d) The timing difference
between main computing units and side computing units is signifi-
cant, which prevents the parallel interception attack for the initial-
ization of secure execution environment. Overall, our experiments
show that MT-SRoT is able to provide the same functionalities of
software-based root-of-trust on multicore platforms as those pro-
vided by the existing timing-based schemes on uniprocessor plat-
forms [16, 15].

6. CONCLUSION AND FUTURE WORK
Due to the fast advent of computing devices with multicores,

it is increasingly important to develop software-based root-of-trust
on multicore platforms so as to avoid the patching problem in de-
ploying hardware-based root-of-trust, especially in a large scale.
Motivated by this, we investigated the feasibility of constructing
software-based root-of-trust on multicore platforms. Our analysis
showed that it is easy to use the inherent parallel computing capa-
bility on multicore platforms to break the existing software-based
root-of-trust schemes designed for uniprocessor platforms. To ad-
dress these attacks, we presented a timing-based primitive called
MT-SRoT to solve these challenges, which is able to ensure un-
tampered execution of a critical security task, such as remote soft-
ware attestation. Our work is the first step towards software-based
root-of-trust on multicore platforms that can be further used as the
foundation to establish a tamper-resistant execution environment
without the presence of tamper-resistant hardware.

Our work extends software-based root-of-trust from uniproces-
sor platforms to multiprocessor platforms. Our scheme preserves
all the advantages of the existing schemes achieved on uniproces-
sor platforms, while it also inherits most of their disadvantages.
The major disadvantages that need to be addressed are: 1) heavy
dependence on a well-controlled measurement environment estab-
lished under strict assumptions, and 2) vulnerable to certain low-
level attacks [15], such as overclock-based attack and DMA-based
attack. For these low-level attacks, we notice a recent scheme, Pi-
oneerNG [12], which is able to defend against all these attacks on

AMD Opteron processors except overclock-based attack. Although
it is still difficult to design a general scheme to overcome these
disadvantages, the situation will change if corresponding hardware
features are available and become standardized. Lack of such hard-
ware support is the major obstacle on the current development of
software-based root-of-trust. PioneerNG also provides an alterna-
tive design to establish software-based root-of-trust on multipro-
cessor platform by stopping all unoccupied processors from using
the hlt instruction. It is different from our scheme which allows
unoccupied processors becoming instantly available to other tasks
after establishing an isolated execution environment on target pro-
cessors. Either design can be adopted to fit the hardware architec-
ture of the target platforms.

Since software-based root-of-trust has the attractive properties
of flexibility and cost-effectiveness for large scale deployment, it
could play an important role in the future. We expect that the future
development of software-based root-of-trust will incorporate more
hardware features to conquer the challenges which are tangled in a
software-only approach.

Acknowledgement: This research is supported by A*STAR SERC
Grant No. 102 101 0027.

References
[1] Trusted Computing Group,

http://www.trustedcomputinggroup.org.

[2] Year 2000 problem, http://en.wikipedia.org/wiki/
Year_2000_problem.

[3] ARM: multicore mobiles coming next year,
http://www.multicoreinfo.com/2009/10/multicore-mobiles.

[4] Intel Trusted Execution Technology,
http://www.intel.com/technology/security.

[5] Advanced Micro Devices. AMD64 virtualization: Secure vir-
tual machine architecture reference manual. AMD Publica-
tion no. 33047 rev. 3.01, May 2005.

[6] Trusted Boot, http://sourceforge.net/projects/tboot.

[7] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On
the difficulty of software-based attestation of embedded de-
vices. In Proceedings of the 16th ACM conference on Com-
puter and communications security, pages 400–409, 2009.

[8] N. T. Courtois, K. Nohl, and S. O’Neil. Algebraic attacks on
the crypto-1 stream cipher in mifare classic and oyster cards.
In Cryptology ePrint Archive: Report 2008/166, 2008.

[9] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward
for efficient pipeline parallelism. In Proceedings of the 16th
International Conference on Parallel Architecture and Com-
pilation Techniques, page 407, 2007.

[10] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of the 12th confer-
ence on USENIX Security Symposium, pages 21–21, 2003.

[11] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
A. Seshadri. How low can you go?: recommendations for
hardware-supported minimal tcb code execution. In Proceed-
ings of the 13th international conference on Architectural
support for programming languages and operating systems,
pages 14–25, 2008.

[12] A. Seshadri. A Software Primitive for Externally-verifiable
Untampered Execution and its Applications to Securing Com-
puting Systems. PhD thesis, Department of Electrical and
Computer Engineering, Carnegie Mellon University, 2009.

[13] A. Seshadri, M. Luk, and A. Perrig. Sake: Software attesta-
tion for key establishment in sensor networks. In Distributed
Computing in Sensor Systems, pages 372–385, 2008.

[14] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.
Scuba: Secure code update by attestation in sensor networks.
In Proceedings of the 5th ACM workshop on Wireless secu-
rity, pages 85–94, 2006.

[15] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: verifying code integrity and enforcing
untampered code execution on legacy systems. In Proceed-
ings of the twentieth ACM symposium on Operating systems
principles, pages 1–16, 2005.

[16] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla. Swatt:
Software-based attestation for embedded devices. In IEEE
Symposium on Security and Privacy, pages 272–282, 2004.

[17] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote
software-based attestation for wireless sensors. In Security
and Privacy in Ad-hoc and Sensor Networks, pages 27–41,
2005.

[18] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not
sufficient to authenticate software. In Proceedings of the
13th conference on USENIX Security Symposium, pages 7–7,
2004.

[19] R. Wojtczuk and J. Rutkowska. Attacking intel trusted execu-
tion technology. In Black Hat DC, 2009.

[20] G. Wurster, P. C. v. Oorschot, and A. Somayaji. A generic
attack on checksumming-based software tamper resistance. In
Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 127–138, 2005.

[21] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed software-
based attestation for node compromise detection in sensor
networks. In Proceedings of the 26th IEEE International
Symposium on Reliable Distributed Systems, pages 219–230,
2007.

